
Deep Learning for NLP
Natalie Parde

UIC CS 421

This
Week’s
Topics

Natalie Parde - UIC CS 421 2

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

Now that we have
more advanced word
embeddings….

• We can incorporate these word
embeddings in more sophisticated text
classification models

• Extremely popular modern text
classification model: Neural network

• Classification models comprised of
interconnected computing units, or
neurons, (loosely!) mirroring the
interconnected neurons in the
human brain

• Neural networks are the force behind
deep learning

Natalie Parde - UIC CS 421 3

Are neural networks new?
1943: First

mathematical
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The
perceptron is

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

1971: Implementation
of feedforward network

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
Man, and Cybernetics, (4), 364-378.

1982: First
convolutional

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First
recurrent neural

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Natalie Parde - UIC CS 421 4

Why haven’t
they been a
big deal until
recently
then?

• Data
• Computing power

Natalie Parde - UIC CS 421 5

There are many
types of neural
networks!

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this
representation do not correspond to specific, known
attributes

Word2Vec
GloVe

fasttext

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

Natalie Parde - UIC CS 421 7

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this
representation do not correspond to specific, known
attributes

• Structure of the deep learning model is
determined at least partially by a hyperparameter
tuning process
• Many experiments will be run using different

hyperparameter combinations to determine what
leads to the best performance on the validation data

Natalie Parde - UIC CS 421 8

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this representation
do not correspond to specific, known attributes

• Structure of the deep learning model is determined
at least partially by a hyperparameter tuning process

• Many experiments will be run using different
hyperparameter combinations to determine what leads to
the best performance on the validation data

• Output is task-dependent

• Can be a class label, a number, or a string of generated
text

Natalie Parde - UIC CS 421 9

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this representation
do not correspond to specific, known attributes

• Structure of the deep learning model is determined
at least partially by a hyperparameter tuning process
• Many experiments will be run using different

hyperparameter combinations to determine what leads to
the best performance on the validation data

• Output is task-dependent
• Can be a class label, a number, or a string of generated

text

• Training can be performed end-to-end
• The model is trained to predict the target output directly,

rather than through pipelined components

Natalie Parde - UIC CS 421 10

Despite these
common themes,
deep learning
models are
implemented in
many different
ways!

� They may vary in how they:
� Handle prior context

� Draw inferences from the data

� Pass data between layers

� These variations make different kinds of
deep learning models work better for
different tasks

Natalie Parde - UIC CS 421 11

Feedforward
Neural
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in
the last layer are hidden from external
viewers

Natalie Parde - UIC CS 421 12

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 421 13

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 421 14

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

Natalie Parde - UIC CS 421 15

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

Natalie Parde - UIC CS 421 16

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

Natalie Parde - UIC CS 421 17

Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 421 18

Any neural network architecture with hidden layers
can be referred to as “deep learning,” but this term
often refers to networks with multiple hidden layers.

Input Output

Natalie Parde - UIC CS 421 19

Neural
networks tend

to be more
powerful than
feature-based

classifiers.

• Classification algorithms like naïve Bayes
and logistic regression assume that data is
linearly separable

• In contrast, neural networks learn nonlinear
ways to separate the data

Natalie Parde - UIC CS 421 20

Neural
networks
aren’t
necessarily
the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network →
more data needed

Neural nets tend to work very well
for large-scale problems, but not
as well for small-scale problems

Natalie Parde - UIC CS 421 21

This
Week’s
Topics

Natalie Parde - UIC CS 421 22

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

How do you build
a neural network?

23

Building
Blocks for

Neural
Networks

• Neural networks are comprised of
computational units

• Computational units:
1. Take a set of real-valued numbers as

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

Natalie Parde - UIC CS 421 24

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥!, … , 𝑥", a unit has a set of corresponding
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 +	∑#𝑤#𝑥#

Natalie Parde - UIC CS 421 25

Sound
familiar?

• This is exactly the same sort of weighted
sum of inputs that we needed to find with
logistic regression!

• Recall that we can also represent the
weighted sum 𝑧 using vector notation:

• 𝐳 = 𝐰 - 𝐱 + 𝑏

Natalie Parde - UIC CS 421 26

Computational
Units

• Neural networks apply nonlinear
functions referred to as activations to
the weighted sum of inputs

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

Natalie Parde - UIC CS 421 27

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 421 28

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression

Natalie Parde - UIC CS 421 29

Computational Unit with Sigmoid
Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Natalie Parde - UIC CS 421 30

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Natalie Parde - UIC CS 421 31

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 32

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 33

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 34

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 35

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$%
= 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 36

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$%
= 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 37

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 38

Other Popular Activation Functions

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Particularly common activation functions

Natalie Parde - UIC CS 421 39

Activation:
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = ,!-,"!

,!.,"!

• Larger derivatives → generally faster
convergence

Natalie Parde - UIC CS 421 40

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 41

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒& − 𝑒!&

𝑒& + 𝑒!&

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 42

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒".$% − 𝑒!".$%

𝑒".$% + 𝑒!".$%
= 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 43

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒".$% − 𝑒!".$%

𝑒".$% + 𝑒!".$%
= 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 44

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 45

Activation:
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

Natalie Parde - UIC CS 421 46

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 47

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 48

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 49

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 50

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 51

Comparing
sigmoid,
tanh, and
ReLU

Natalie Parde - UIC CS 421 52

This
Week’s
Topics

Natalie Parde - UIC CS 421 53

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

Combining
Computational Units
• Neural networks are powerful

primarily because they can combine
multiple computational units into
larger networks

• Many problems cannot be solved
using a single computational unit

• Example: XOR

Natalie Parde - UIC CS 421 54

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

AND and OR can
both be solved
using a single
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value
based on whether the product of its inputs and
associated weights surpasses a threshold

𝑦 = 	 <0, if	𝑤 @ 𝑥 + 𝑏 ≤ 0
1, if	𝑤 @ 𝑥 + 𝑏 > 0

Natalie Parde - UIC CS 421 55

It’s easy to
compute
AND and OR
using
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 -1

Natalie Parde - UIC CS 421 56

It’s easy to
compute
AND and OR
using
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 0

Natalie Parde - UIC CS 421 57

However, it’s
impossible to
compute XOR using
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Natalie Parde - UIC CS 421 58

The only successful way to compute XOR is by
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

ReLU

Natalie Parde - UIC CS 421 59

Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 60

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 61

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 62

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 63

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 64

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 65

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 66

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 67

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 68

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 69

Feedforward
Network

• Final formulation for previous network:
• h = ReLU 𝑊x + 𝐛
• 𝑦′ = ReLU 𝑈h + 𝐛

• This represents a two-layer feedforward
neural network

• When numbering layers, count the
hidden and output layers but not the
inputs

Natalie Parde - UIC CS 421 70

We can
generalize

this for
networks

with > 2
layers.

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(-) be any activation function
• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

Natalie Parde - UIC CS 421 71

Neural
Network:
Formal
Structure

• With this representation, a two-layer network
becomes:

• 𝑧[!] = 𝑊[!]𝑎[G] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[H] = 𝑊[H]𝑎[!] + 𝑏[H]

• 𝑎[H] = 𝑔 H (𝑧 H)
• 𝑦I =	𝑎[H]

• We can easily generalize to networks with
more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#-!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 #)
• 𝑦I =	𝑎["]

Natalie Parde - UIC CS 421 72

General Tips for
Improving Neural
Network Performance
• Initialize weights with small random numbers
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function

Natalie Parde - UIC CS 421 73

Fortunately, you shouldn’t need to build
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J

Natalie Parde - UIC CS 421 74

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/

Summary:
Feedforward
Neural
Networks

• Neural networks are classification models
that implicitly learn sophisticated feature
representations

• Feedforward neural networks are
comprised of interconnected layers of
computing units through which information
is passed forward from one layer to the next

• An activation function is a non-linear
function applied to the weighted sum of
inputs for a computing unit

• Computing units can be combined with
another to solve complex tasks

Natalie Parde - UIC CS 421 75

This
Week’s
Topics

Natalie Parde - UIC CS 421 76

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

How do we train neural
networks?
qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Natalie Parde - UIC CS 421 77

How do we train neural
networks?
üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Cross-entropy loss

Natalie Parde - UIC CS 421 78

How do we train neural
networks?
üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Gradient descent

Natalie Parde - UIC CS 421 79

How do we train neural
networks?
üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

???

Natalie Parde - UIC CS 421 80

There are
two ways
that we can
pass
information
through a
neural
network.

• Forward pass
• Apply operations in the direction of the final

layer
• Pass the output of one computation as the

input to the next
• Backward pass

• ???

Natalie Parde - UIC CS 521 81

Backpropagation

• Propagates loss values all the way back to the beginning
of a neural network, even though it’s only computed at
the end of the network

• Why is this necessary?
• Simply taking the derivative like we did for logistic

regression only provides the gradient for the most recent
(i.e., last) weight layer

• What we need is a way to:
• Compute the derivative with respect to weight parameters

occurring earlier in the network as well
• Even though we can only compute loss at a single point (the

end of the network)

Natalie Parde - UIC CS 421 82

Backpropagation
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with
respect to v(x)

• Find the derivative of v(x) with
respect to x

• Multiply the two together
• !"
!# =

!$
!% ∗

!%
!#

• Update weights at each layer based on
this information

Natalie Parde - UIC CS 421 83

There are
two ways
that we can
pass
information
through a
neural
network.

• Forward pass
• Apply operations in the direction of the final

layer
• Pass the output of one computation as the

input to the next
• Backward pass

• Compute partial derivatives in the opposite
direction of the final layer

• Multiply them by the partial derivatives
passed down from the previous step

Natalie Parde - UIC CS 521 84

Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 85

Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 86

Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 87

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 88

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 89

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 90

Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Represent L(a, b, c) = c(a + 2b)

Natalie Parde - UIC CS 521 91

To perform
a backward
pass, how
do we get
from L all
the way
back to a, b,
and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect
to v(x)

• Find the derivative of v(x) with respect
to x

• Multiply the two together
• JK
JL
= JM

JN
∗ JN
JL

Natalie Parde - UIC CS 521

Derivatives of popular activation functions:
!&'()(#)

!#
= 1− tanh% 𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 90	for	𝑧 < 0

1	for	𝑧 ≥ 0

92

In theory, !&'()(#)!% 	 is undefined! In

practice, by convention we set !&'()(#)!% =
0.

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= ?

Natalie Parde - UIC CS 521 93

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐

= 𝑒

Natalie Parde - UIC CS 521 94

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= 𝑒

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎

=
𝜕𝐿
𝜕𝑒

𝜕𝑒
𝜕𝑎

= 𝑐 ∗ 1 = 𝑐
Natalie Parde - UIC CS 521 95

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= 𝑐

'(
'*
= ?

'(
'+
= 𝑒

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕𝑒

𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏

= 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐
Natalie Parde - UIC CS 521 96

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= 𝑐

'(
'*
= 2𝑐

'(
'+
= 𝑒

Natalie Parde - UIC CS 521 97

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with
respect to a, b, and c

'(
')
= 𝑐 = −2

'(
'*
= 2𝑐 = 2 ∗ −2 = −4

'(
'+
= 𝑒 = 5

Natalie Parde - UIC CS 521 98

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Computation graphs for neural networks
involve numerous interconnected units.

Input Output

Natalie Parde - UIC CS 521 99

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

Natalie Parde - UIC CS 521 100

What would a computation graph look
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

All of these weights
need to be updated
using backpropagation!

w

Natalie Parde - UIC CS 521 101

This
Week’s
Topics

Natalie Parde - UIC CS 421 102

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

Neural Language
Models

� Popular application of neural networks
� Advantages over n-gram language

models:
� Can handle longer histories
� Can generalize over contexts of similar

words
� Disadvantage:

� Slower to train
� Neural language models make more

accurate predictions than n-gram
language models trained on datasets of
similar sizes

Natalie Parde - UIC CS 421 103

Feedforward
Neural
Language
Model

• Input: Representation of some number of
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible

next words
• Goal: Approximate the probability of a word

given the entire prior context 𝑃(𝑤X|𝑤!X-!)
based on the n previous words

• 𝑃(𝑤X|𝑤!X-!) ≈ 𝑃(𝑤X|𝑤X-".!X-!)

Natalie Parde - UIC CS 421 104

Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie Parde - UIC CS 421 105

Neural Language Model

Natalie Parde - UIC CS 421

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

106

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

Neural Language Model

h1

Natalie Parde - UIC CS 421 107

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

Neural Language Model

h1

h2

Natalie Parde - UIC CS 421 108

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

Neural Language Model

h1

h2

y1

…

“plan”

…

y|V|

Natalie Parde - UIC CS 421 109

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

Neural Language Model

h1

h2

y1

…

“plan”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 421 110

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

This
Week’s
Topics

Natalie Parde - UIC CS 421 111

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

Popular Deep Learning Architectures in
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers

Natalie Parde - UIC CS 421 112

Recurrent
Neural
Networks
(RNNs)

� General premise:
� Deep learning models should be making

decisions for sequential input based on
decisions that have already been made at
earlier points of the sequence

� Classic feedforward neural network:
� Input to a layer is a vector of numbers

representing the outputs of all units in the
previous layer

� Modification for recurrent neural networks:

� Input to a layer is a vector of numbers
representing the outputs of all units in the
previous layer + a vector of numbers
representing the layer’s output at the
previous timestep

Natalie Parde - UIC CS 421 113

Structure of Single-Unit RNN Layer

xt

Current input

Natalie Parde - UIC CS 421 114

Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 421 115

Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 421 116

Structure of Single-Unit RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 421 117

Why is this useful for NLP problems?

� Most data for NLP tasks is inherently sequential!

� Making use of sequences using feedforward neural networks requires:

� Fixed-length context windows

� Concatenated context vectors

� This limits the model’s abilities, and prevents it from considering variable-length
context

Natalie Parde - UIC CS 421 118

There are many popular variations of RNNs.

• “Standard” RNNs are often referred to informally as vanilla RNNs

• Some RNN architectures are modified to specifically improve the model’s ability to
consider long-term context

• Long short-term memory networks (LSTMs)

• Gated recurrent units (GRUs)

xt ht yt

Natalie Parde - UIC CS 421 119

Long Short-Term Memory Networks (LSTMs)

• Specialized RNN units that
incorporate gating mechanisms
to remove information that is no
longer needed from the context,
and add information that is
anticipated to be of use later

• Gating mechanisms include:
• Forget gate: Should we erase

this existing information from
the context?

• Add gate: Should we write
this new information to the
context?

• Output gate: What
information should be
leveraged for the current
hidden state?

10/2/24

!!"#

"!

ℎ!"#

$ ⨀

Forget

$

tanh
⨀ +

Add

$

tanh
⨀

Output

ℎ!

!!

Natalie Parde - UIC CS 421 120

Gated Recurrent Units (GRUs)
• Also utilizes gating mechanisms

to manage contexts, but uses a
simpler architecture than LSTMs

• Only two gates:

• Reset gate: Which elements of
the previous hidden state are
relevant to the current
context?

• Update gate: Which elements
of the intermediate hidden
state and of the previous
hidden state need to be
preserved for future use?

10/2/24

!!

ℎ!"#

#
tanh

⨀

+

Reset Update

ℎ!

Natalie Parde - UIC CS 421 121

Overall, comparing inputs and outputs for
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1
xtht-1

ht

Feedforward RNN LSTM GRU

Natalie Parde - UIC CS 421 122

When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which you need to train
your model quickly and don’t have access to high-performance
computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the same tasks

Why use LSTMs instead of GRUs?

Natalie Parde - UIC CS 421 123

Bidirectional
Models

• All RNN units can be combined
with one another in the same
way that feedforward units can
be combined
• Layers of vanilla RNN units

• Layers of LSTM units

• Layers of GRU units

• These layers can also be
combined to implement
bidirectional architectures that
process input both from
beginning to end and from end
to beginning

Natalie Parde - UIC CS 421 124

Bidirectional RNNs

RNNNatalie ran to LC C006

Natalie Parde - UIC CS 421 125

Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie

Natalie Parde - UIC CS 421 126

Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie

+
ℎ,

ℎ,
0

ℎ,*

Natalie Parde - UIC CS 421 127

Sequence Classification with a Bidirectional
RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
Natalie Parde - UIC CS 421 128

This
Week’s
Topics

Natalie Parde - UIC CS 421 129

Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep
learning architectures

Popular Deep Learning Architectures in
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers

Natalie Parde - UIC CS 421 130

Convolutional
Neural
Networks
(CNNs)

� General premise:
� Deep learning models should be making

decisions based on local regions of the
context

� Classic feedforward neural network:
� Input to a layer is a vector of numbers

representing the outputs of all units in the
previous layer

� Modification for convolutional neural
networks:

� Input to a layer is the output of convolutional
operations performed on subsets of the
output from the previous layer

Natalie Parde - UIC CS 421 131

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Stride size = 1
Natalie Parde - UIC CS 421 132

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Feature Map

Natalie Parde - UIC CS 421 133

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421 Feature Map

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 134

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421 Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 135

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 136

Typically, we learn multiple feature maps and then reduce the
dimensionality of the learned feature maps by pooling (e.g., taking the
average or maximum) subsets of their values.

• This is done to:

• Further increase efficiency

• Improve the model’s invariance to small changes in the input

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 137

The output from pooling layers is typically then passed along
as input to one or more feedforward layers.

Input Output

Natalie Parde - UIC CS 421 138

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Why use
CNNs for an
NLP task?

� Originally designed for image classification!

� However, offers unique advantages for NLP
tasks:

� Extracts meaningful local structures from input

� Increases efficiency of the training process
relative to feedforward neural networks

Natalie Parde - UIC CS 421 139

Popular Deep Learning Architectures in
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers

Natalie Parde - UIC CS 421 140

Transformers

� General premise:
� Deep learning models don’t need to wait to process items one after the other to incorporate

sequential information

� Classic feedforward neural network:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

� Modification for recurrent neural networks:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous layer + a

vector of numbers representing the layer’s output at the previous timestep

� Modification for Transformers:
� Input to a feedforward layer is the output from a self-attention layer computed over the entire

input sequence, indicating which words in the sequence are most important to one another

Natalie Parde - UIC CS 421 141

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 = 𝐖𝐐𝐱1
• k1 = 𝐖𝐊𝐱1
• v1 = 𝐖𝐕𝐱1

Natalie Parde - UIC CS 421 142

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
visqis

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 143

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 = 𝐖𝐐𝐱1
• k1 = 𝐖𝐊𝐱1
• v1 = 𝐖𝐕𝐱1

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score15 = 𝐪1 @ 𝐤5

• 𝛼15 =
678(score!")

∑#$%
& 678(score!#)

Natalie Parde - UIC CS 421 144

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥& , 𝑥' = 𝑞& ⋅ 𝑘'

qis
𝛼!" = softmax score 𝑥! , 𝑥"

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 145

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 =𝐖𝐐𝐱1
• k1 =𝐖𝐊𝐱1
• v1 =𝐖𝐕𝐱1

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score15 = 𝐪1 @ 𝐤5

• 𝛼15 =
678(score!")

∑#$%
& 678(score!#)

3. Compute the output vector 𝐲# as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑5G-H 𝛼15v5

Natalie Parde - UIC CS 421 146

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥& , 𝑥' = 𝑞& ⋅ 𝑘'

qis
𝛼!" = softmax score 𝑥! , 𝑥"

𝑦& =K
'(&

𝛼&'𝑣'

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 147

Transformer Blocks

• Transformers are implemented by
stacking one or more blocks of the
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual
connections between them even
though they do not immediately
precede or proceed one another

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 421 148

Which of these architectures
should you use?

• Depends on your:

• Task

• Dataset

• Compute resources

• Current state-of-the-art models are usually Transformer-based;
however, state-of-the-art Transformers require many compute
resources

• GPUs for performing lots of floating point operations

• RAM for holding lots of data in memory

• Specialized tasks may also benefit from combined architectures
(e.g., CNN-LSTM)!

• It’s good to experiment with numerous models to determine what
works best for the problem you’re trying to solve, within the
constraints of your compute environment

Natalie Parde - UIC CS 421 149

Summary:
Deep
Learning for
NLP

• Loss can be propagated backward through
the network from the output layer to earlier
layers using backpropagation

• Network architectures can be optimized via
a fine-tuning process

• Neural networks can be used to build
neural language models

• Recurrent neural networks directly
encode temporal context into the network’s
computational units

• Convolutional neural networks increase
efficiency by performing operations over
regions of input data

• Transformers calculate self-attention to
encode temporal context for the full input in
a single step

Natalie Parde - UIC CS 421 150

