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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



Now that we have 
more advanced word 
embeddings….

• We can incorporate these word 
embeddings in more sophisticated text 
classification models

• Extremely popular modern text 
classification model: Neural network

• Classification models comprised of 
interconnected computing units, or 
neurons, (loosely!) mirroring the 
interconnected neurons in the 
human brain

• Neural networks are the force behind 
deep learning
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Are neural networks new?
1943: First 

mathematical 
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward network 

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, 
Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a 
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
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Why haven’t 
they been a 
big deal until 
recently 
then?

• Data
• Computing power
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There are many 
types of neural 
networks!



Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this 
representation do not correspond to specific, known 
attributes

Word2Vec
GloVe

fasttext
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Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this 
representation do not correspond to specific, known 
attributes

• Structure of the deep learning model is 
determined at least partially by a hyperparameter 
tuning process
• Many experiments will be run using different 

hyperparameter combinations to determine what 
leads to the best performance on the validation data

Natalie Parde - UIC CS 421 8



Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this representation 
do not correspond to specific, known attributes

• Structure of the deep learning model is determined 
at least partially by a hyperparameter tuning process

• Many experiments will be run using different 
hyperparameter combinations to determine what leads to 
the best performance on the validation data

• Output is task-dependent

• Can be a class label, a number, or a string of generated 
text
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Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this representation 
do not correspond to specific, known attributes

• Structure of the deep learning model is determined 
at least partially by a hyperparameter tuning process
• Many experiments will be run using different 

hyperparameter combinations to determine what leads to 
the best performance on the validation data

• Output is task-dependent
• Can be a class label, a number, or a string of generated 

text

• Training can be performed end-to-end
• The model is trained to predict the target output directly, 

rather than through pipelined components
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Despite these 
common themes, 
deep learning 
models are 
implemented in 
many different 
ways!

� They may vary in how they:
� Handle prior context

� Draw inferences from the data

� Pass data between layers

� These variations make different kinds of 
deep learning models work better for 
different tasks
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Feedforward 
Neural 
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in 
the last layer are hidden from external 
viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value
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Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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Any neural network architecture with hidden layers 
can be referred to as “deep learning,” but this term 
often refers to networks with multiple hidden layers.

Input Output
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Neural 
networks tend 

to be more 
powerful than 
feature-based 

classifiers.

• Classification algorithms like naïve Bayes 
and logistic regression assume that data is 
linearly separable

• In contrast, neural networks learn nonlinear 
ways to separate the data
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Neural 
networks 
aren’t 
necessarily 
the best 
classifier 
for all 
tasks!

Learning features implicitly 
requires a lot of data

In general, deeper network → 
more data needed

Neural nets tend to work very well 
for large-scale problems, but not 
as well for small-scale problems
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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



How do you build 
a neural network?

23



Building 
Blocks for 

Neural 
Networks

• Neural networks are comprised of 
computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥!, … , 𝑥", a unit has a set of corresponding 
weights 𝑤!, … , 𝑤" and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 +	∑#𝑤#𝑥#
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Sound 
familiar?

• This is exactly the same sort of weighted 
sum of inputs that we needed to find with 
logistic regression!

• Recall that we can also represent the 
weighted sum 𝑧 using vector notation:

• 𝐳 = 𝐰 - 𝐱 + 𝑏
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Computational 
Units

• Neural networks apply nonlinear 
functions referred to as activations to 
the weighted sum of inputs

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression
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Computational Unit with Sigmoid 
Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 35



Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$%
= 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒!".$%
= 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Other Popular Activation Functions

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Particularly common activation functions
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Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = ,!-,"!

,!.,"!

• Larger derivatives → generally faster 
convergence
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒& − 𝑒!&

𝑒& + 𝑒!&

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒".$% − 𝑒!".$%

𝑒".$% + 𝑒!".$%
= 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒".$% − 𝑒!".$%

𝑒".$% + 𝑒!".$%
= 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 45



Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 48



Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Comparing 
sigmoid, 
tanh, and 
ReLU
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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



Combining 
Computational Units
• Neural networks are powerful 

primarily because they can combine 
multiple computational units into 
larger networks

• Many problems cannot be solved 
using a single computational unit

• Example: XOR

Natalie Parde - UIC CS 421 54

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0



AND and OR can 
both be solved 
using a single 
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value 
based on whether the product of its inputs and 
associated weights surpasses a threshold

𝑦 = 	 <0, if	𝑤 @ 𝑥 + 𝑏 ≤ 0
1, if	𝑤 @ 𝑥 + 𝑏 > 0
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 -1
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 0
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However, it’s 
impossible to 
compute XOR using 
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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The only successful way to compute XOR is by 
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

ReLU
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Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 68



Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1
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Feedforward 
Network

• Final formulation for previous network:
• h = ReLU 𝑊x + 𝐛
• 𝑦′ = ReLU 𝑈h + 𝐛

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
inputs
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We can 
generalize 

this for 
networks 

with > 2 
layers.

• Let W[n] be the weight matrix for layer n, b[n] 
be the bias vector for layer n, and so forth

• Let 𝑔(-) be any activation function
• Let a[n] be the output from layer n, and z[n] 

be the combination of weights and biases 
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]
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Neural 
Network: 
Formal 
Structure

• With this representation, a two-layer network 
becomes:

• 𝑧[!] = 𝑊[!]𝑎[G] + 𝑏[!]

• 𝑎[!] = 𝑔 ! 𝑧 !

• 𝑧[H] = 𝑊[H]𝑎[!] + 𝑏[H]

• 𝑎[H] = 𝑔 H (𝑧 H )
• 𝑦I =	𝑎[H]

• We can easily generalize to networks with 
more layers:

• For i in 1..n
• 𝑧[#] = 𝑊[#]𝑎[#-!] + 𝑏[#]

• 𝑎[#] = 𝑔 # (𝑧 # )
• 𝑦I =	𝑎["]
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General Tips for 
Improving Neural 
Network Performance
• Initialize weights with small random numbers
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function
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Fortunately, you shouldn’t need to build 
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J
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Summary: 
Feedforward 
Neural 
Networks

• Neural networks are classification models 
that implicitly learn sophisticated feature 
representations

• Feedforward neural networks are 
comprised of interconnected layers of 
computing units through which information 
is passed forward from one layer to the next

• An activation function is a non-linear 
function applied to the weighted sum of 
inputs for a computing unit

• Computing units can be combined with 
another to solve complex tasks
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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



How do we train neural 
networks?
qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?
üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?
üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?
üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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There are 
two ways 
that we can 
pass 
information 
through a 
neural 
network.

• Forward pass
• Apply operations in the direction of the final 

layer
• Pass the output of one computation as the 

input to the next
• Backward pass

• ???
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Backpropagation

• Propagates loss values all the way back to the beginning 
of a neural network, even though it’s only computed at 
the end of the network

• Why is this necessary?
• Simply taking the derivative like we did for logistic 

regression only provides the gradient for the most recent 
(i.e., last) weight layer

• What we need is a way to:
• Compute the derivative with respect to weight parameters 

occurring earlier in the network as well
• Even though we can only compute loss at a single point (the 

end of the network)
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Backpropagation 
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using 

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with 
respect to v(x)

• Find the derivative of v(x) with 
respect to x

• Multiply the two together
• !"
!# =

!$
!% ∗

!%
!#

• Update weights at each layer based on 
this information
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There are 
two ways 
that we can 
pass 
information 
through a 
neural 
network.

• Forward pass
• Apply operations in the direction of the final 

layer
• Pass the output of one computation as the 

input to the next
• Backward pass

• Compute partial derivatives in the opposite 
direction of the final layer

• Multiply them by the partial derivatives 
passed down from the previous step
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Example: Forward Pass

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e

Goal: Represent L(a, b, c) = c(a + 2b)
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Example: Forward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Represent L(a, b, c) = c(a + 2b)
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To perform 
a backward 
pass, how 
do we get 
from L all 
the way 
back to a, b, 
and c?

• Chain rule!
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with respect 
to v(x)

• Find the derivative of v(x) with respect 
to x

• Multiply the two together
• JK
JL
= JM

JN
∗ JN
JL

Natalie Parde - UIC CS 521

Derivatives of popular activation functions: 
!&'()(#)

!#
= 1− tanh% 𝑧

𝜕ReLU(𝑧)
𝜕𝑧 = 90	for	𝑧 < 0

1	for	𝑧 ≥ 0

92

In theory, !&'()(#)!% 	 is undefined!  In 

practice, by convention we set !&'()(#)!% =
0.



Example: Backward Pass

a

b

c

d

e

L

3

1

-2

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= ?
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= ?

L = c * e

So….

𝜕𝐿
𝜕𝑐

= 𝑒
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= ?

'(
'*
= ?

'(
'+
= 𝑒 

L = c * e = c * (d+a)

So….

𝜕𝐿
𝜕𝑎

=
𝜕𝐿
𝜕𝑒

𝜕𝑒
𝜕𝑎

= 𝑐 ∗ 1 = 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= 𝑐 

'(
'*
= ?

'(
'+
= 𝑒 

L = c * e = c * ((2*b)+a)

So….

𝜕𝐿
𝜕𝑏

=
𝜕𝐿
𝜕𝑒

𝜕𝑒
𝜕𝑑

𝜕𝑑
𝜕𝑏

= 𝑐 ∗ 1 ∗ 2 = 2 ∗ 𝑐
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= 𝑐 

'(
'*
= 2𝑐 

'(
'+
= 𝑒 
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Example: Backward Pass

a

b

c

d

e

L

3

1

-2

Goal: Compute the derivative of L with 
respect to a, b, and c

'(
')
= 𝑐 = −2 

'(
'*
= 2𝑐 = 2 ∗ −2 = −4 

'(
'+
= 𝑒 = 5 

Natalie Parde - UIC CS 521 98

2*b = 2*1 = 2

d+a = 2+3 = 5

c*e = -2*5 = -10



Computation graphs for neural networks 
involve numerous interconnected units.

Input Output
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What would a computation graph look 
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗
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∗
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w

w
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What would a computation graph look 
like for a simple neural network?

ReLU

ReLU

ReLU

Output

∗

∗

∗
∗

∗

∗∗

∗

∗

Σ

Σ

Σ

ReLU

ReLU

ReLU

∗

∗

∗
∗

∗

∗∗

∗

∗
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Σ

Σ

L

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

All of these weights 
need to be updated 
using backpropagation!

w
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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



Neural Language 
Models

� Popular application of neural networks
� Advantages over n-gram language 

models:
� Can handle longer histories
� Can generalize over contexts of similar 

words
� Disadvantage:

� Slower to train
� Neural language models make more 

accurate predictions than n-gram 
language models trained on datasets of 
similar sizes
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Feedforward 
Neural 
Language 
Model

• Input: Representation of some number of 
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible 

next words
• Goal: Approximate the probability of a word 

given the entire prior context 𝑃(𝑤X|𝑤!X-!) 
based on the n previous words

• 𝑃(𝑤X|𝑤!X-!) ≈ 𝑃(𝑤X|𝑤X-".!X-! )
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Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)
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Neural Language Model

Natalie Parde - UIC CS 421

𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)
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Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2



Neural Language Model

h1
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𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2



Neural Language Model

h1

h2
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𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2



Neural Language Model

h1

h2

y1

…

“plan”

…

y|V|
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𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2



Neural Language Model

h1

h2

y1

…

“plan”

…

y|V|

softmax 
distribution over 
all words in the 
vocabulary
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𝑃(𝑤, = “plan”|𝑤,!- = “to”, 𝑤,!. = “down”, 𝑤,!/ = “sat”)

Natalie wt-4

sat wt-3

down wt-2

to wt-1

plan wt

more wt+1

lectures wt+2



This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



Popular Deep Learning Architectures in 
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers
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Recurrent 
Neural 
Networks 
(RNNs)

� General premise:
� Deep learning models should be making 

decisions for sequential input based on 
decisions that have already been made at 
earlier points of the sequence

� Classic feedforward neural network:
� Input to a layer is a vector of numbers 

representing the outputs of all units in the 
previous layer

� Modification for recurrent neural networks:

� Input to a layer is a vector of numbers 
representing the outputs of all units in the 
previous layer + a vector of numbers 
representing the layer’s output at the 
previous timestep
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Structure of Single-Unit RNN Layer

xt

Current input
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Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 421 115



Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Structure of Single-Unit RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Why is this useful for NLP problems?

� Most data for NLP tasks is inherently sequential!

� Making use of sequences using feedforward neural networks requires:

� Fixed-length context windows

� Concatenated context vectors

� This limits the model’s abilities, and prevents it from considering variable-length 
context
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There are many popular variations of RNNs.

• “Standard” RNNs are often referred to informally as vanilla RNNs

• Some RNN architectures are modified to specifically improve the model’s ability to 
consider long-term context

• Long short-term memory networks (LSTMs)

• Gated recurrent units (GRUs)

xt ht yt
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Long Short-Term Memory Networks (LSTMs)

• Specialized RNN units that 
incorporate gating mechanisms 
to remove information that is no 
longer needed from the context, 
and add information that is 
anticipated to be of use later

• Gating mechanisms include:
• Forget gate: Should we erase 

this existing information from 
the context?

• Add gate: Should we write 
this new information to the 
context?

• Output gate: What 
information should be 
leveraged for the current 
hidden state?

10/2/24

!!"#

"!

ℎ!"#

$ ⨀

Forget

$

tanh
⨀ +

Add

$

tanh
⨀

Output

ℎ!

!!
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Gated Recurrent Units (GRUs)
• Also utilizes gating mechanisms 

to manage contexts, but uses a 
simpler architecture than LSTMs

• Only two gates:

• Reset gate: Which elements of 
the previous hidden state are 
relevant to the current 
context?

• Update gate: Which elements 
of the intermediate hidden 
state and of the previous 
hidden state need to be 
preserved for future use?

10/2/24

!!

ℎ!"#

#
tanh

⨀

# +

Reset Update

ℎ!
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Overall, comparing inputs and outputs for 
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1
xtht-1

ht

Feedforward RNN LSTM GRU
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When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which you need to train 
your model quickly and don’t have access to high-performance 
computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the same tasks

Why use LSTMs instead of GRUs?
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Bidirectional 
Models

• All RNN units can be combined 
with one another in the same 
way that feedforward units can 
be combined
• Layers of vanilla RNN units

• Layers of LSTM units

• Layers of GRU units

• These layers can also be 
combined to implement 
bidirectional architectures that 
process input both from 
beginning to end and from end 
to beginning
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Bidirectional RNNs

RNNNatalie ran to LC C006
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Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie
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Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie

+
ℎ,

ℎ,
0

ℎ,*
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Sequence Classification with a Bidirectional 
RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
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This 
Week’s 
Topics
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Tuesday

Neural networks
Computational units
Combining layers of units

Thursday

Backpropagation
Neural language models
Recurrent neural networks
Other popular deep 
learning architectures



Popular Deep Learning Architectures in 
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers
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Convolutional 
Neural 
Networks 
(CNNs)

� General premise:
� Deep learning models should be making 

decisions based on local regions of the 
context

� Classic feedforward neural network:
� Input to a layer is a vector of numbers 

representing the outputs of all units in the 
previous layer

� Modification for convolutional neural 
networks:

� Input to a layer is the output of convolutional 
operations performed on subsets of the 
output from the previous layer
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Stride size = 1
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I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Feature Map
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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Stride size = 2
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.



We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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Typically, we learn multiple feature maps and then reduce the 
dimensionality of the learned feature maps by pooling (e.g., taking the 
average or maximum) subsets of their values.

• This is done to:

• Further increase efficiency

• Improve the model’s invariance to small changes in the input

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 137



The output from pooling layers is typically then passed along 
as input to one or more feedforward layers.

Input Output
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Why use 
CNNs for an 
NLP task?

� Originally designed for image classification!

� However, offers unique advantages for NLP 
tasks:

� Extracts meaningful local structures from input

� Increases efficiency of the training process 
relative to feedforward neural networks
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Popular Deep Learning Architectures in 
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers
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Transformers

� General premise:
� Deep learning models don’t need to wait to process items one after the other to incorporate 

sequential information

� Classic feedforward neural network:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

� Modification for recurrent neural networks:
� Input to a layer is a vector of numbers representing the outputs of all units in the previous layer + a 

vector of numbers representing the layer’s output at the previous timestep

� Modification for Transformers:
� Input to a feedforward layer is the output from a self-attention layer computed over the entire 

input sequence, indicating which words in the sequence are most important to one another

Natalie Parde - UIC CS 421 141



Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 = 𝐖𝐐𝐱1
• k1 = 𝐖𝐊𝐱1
• v1 = 𝐖𝐕𝐱1
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Bidirectional Self-Attention Layer
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 = 𝐖𝐐𝐱1
• k1 = 𝐖𝐊𝐱1
• v1 = 𝐖𝐕𝐱1

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score15 = 𝐪1 @ 𝐤5

• 𝛼15 =
678(score!")

∑#$%
& 678(score!#)
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Bidirectional Self-Attention Layer
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q1 =𝐖𝐐𝐱1
• k1 =𝐖𝐊𝐱1
• v1 =𝐖𝐕𝐱1

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score15 = 𝐪1 @ 𝐤5

• 𝛼15 =
678(score!")

∑#$%
& 678(score!#)

3. Compute the output vector 𝐲# as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑5G-H 𝛼15v5
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Bidirectional Self-Attention Layer
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Transformer Blocks

• Transformers are implemented by 
stacking one or more blocks of the 
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual 
connections between them even 
though they do not immediately 
precede or proceed one another
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Which of these architectures 
should you use?

• Depends on your:

• Task

• Dataset

• Compute resources

• Current state-of-the-art models are usually Transformer-based; 
however, state-of-the-art Transformers require many compute 
resources

• GPUs for performing lots of floating point operations

• RAM for holding lots of data in memory

• Specialized tasks may also benefit from combined architectures 
(e.g., CNN-LSTM)!

• It’s good to experiment with numerous models to determine what 
works best for the problem you’re trying to solve, within the 
constraints of your compute environment
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Summary: 
Deep 
Learning for 
NLP

• Loss can be propagated backward through 
the network from the output layer to earlier 
layers using backpropagation

• Network architectures can be optimized via 
a fine-tuning process

• Neural networks can be used to build 
neural language models

• Recurrent neural networks directly 
encode temporal context into the network’s 
computational units

• Convolutional neural networks increase 
efficiency by performing operations over 
regions of input data

• Transformers calculate self-attention to 
encode temporal context for the full input in 
a single step
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